skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sheppard, Scott S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The trans-Neptunian object (58534) 1997 CQ29(a.k.a. Logos) is a resolved wide binary in the dynamically Cold Classical population. With Hubble Space Telescope resolved observations where the primary Logos is well separated from its secondary Zoe it can be established that Logos has a time-variable brightness. Logos’ brightness varied by several tenths of a magnitude over a short timescale of hours while the brightness variability of Zoe was on a longer timescale. New unresolved ground-based observations obtained with the Lowell Discovery Telescope and the Magellan-Baade telescope confirm at least one highly variable component in this system. With our ground-based observations and photometric constraints from space-based observations, we suggest that the primary Logos is likely a close/contact binary whose rotational period is 17.43 ± 0.06 hr for a lightcurve amplitude of 0.70 ± 0.07 mag, while Zoe is potentially a (very) slow rotator with an unknown shape. Using theCandelasoftware, we model the Logos-Zoe system and predict its upcoming mutual events season using rotational, physical, and mutual orbit parameters derived in this work or already published. Zoe’s shape and rotational period are still uncertain, so we consider various options to better understand Zoe. The upcoming mutual event season for Logos-Zoe starts in 2026 and will last for four years with up to two events per year. Observations of these mutual events will allow us to significantly improve the physical and rotational properties of both Logos and Zoe. 
    more » « less
  2. Abstract The 5:3 and 7:4 mean motion resonances of Neptune are at 42.3 and 43.7 au, respectively, and overlap with objects in the classical trans-Neptunian belt (Kuiper Belt). We report the complete/partial lightcurves of 13 and 14 trans-Neptunian objects (TNOs) in the 5:3 and 7:4 resonances, respectively. We report a most likely contact binary in the 7:4 resonance, 2013 FR28, with a periodicity of 13.97 ± 0.04 hr and a lightcurve amplitude of 0.94 ± 0.02 mag. With a V-/U-shaped lightcurve, 2013 FR28has one of the largest well-sampled TNO amplitudes observed with ground-based observations, comparable to the well-determined contact binary 2001 QG298. 2013 FR28has a mass ratioq∼ 1 with a densityρ∼ 1 g cm−3. We find several objects with large amplitudes and classify 2004 SC60, 2006 CJ69, and 2013 BN82as likely contact binaries and 2001 QF331, 2003 YW179, and 2015 FP345as likely elongated objects. We observe the 17:9 resonant or classical object 2003 SP317that we classify as a likely contact binary. A lower estimate of 10%–50% and 20%–55% for the fraction of (nearly) equal-sized contact binaries is calculated in the 5:3 and 7:4 resonances, respectively. Surface colors of 2004 SC60, 2013 BN82, 2014 OL394, and 2015 FP345have been obtained. Including these colors with ones from the literature reveals that elongated objects and contact binaries share the same ultrared surface color, except Manwë–Thorondor and 2004 SC60. Not only are the colors of the 7:4 and 5:3 TNOs similar to the cold classicals, but we demonstrate that the rotational properties of the 5:3 and 7:4 resonants are similar to those of the cold classicals, inferring a clear link between these subpopulations. 
    more » « less
  3. Abstract The boundary of solar system object discovery lies in detecting its faintest members. However, their discovery in detection catalogs from imaging surveys is fundamentally limited by the practice of thresholding detections at signal-to-noise (SNR) ≥ 5 to maintain catalog purity. Faint moving objects can be recovered from survey images using the shift-and-stack algorithm, which coadds pixels from multi-epoch images along a candidate trajectory. Trajectories matching real objects accumulate signal coherently, enabling high-confidence detections of very faint moving objects. Applying shift-and-stack comes with high computational cost, which scales with target object velocity, typically limiting its use to searches for slow-moving objects in the outer solar system. This work introduces a modified shift-and-stack algorithm that trades sensitivity for speedup. Our algorithm stacks low-SNR detection catalogs instead of pixels, the sparsity of which enables approximations that reduce the number of stacks required. Our algorithm achieves real-world speedups of 10–103× over image-based shift-and-stack while retaining the ability to find faint objects. We validate its performance by recovering synthetic inner and outer solar system objects injected into images from the DECam Ecliptic Exploration Project. Exploring the sensitivity–compute time trade-off of this algorithm, we find that our method achieves a speedup of ∼30× with 88% of the memory usage while sacrificing 0.25 mag in depth compared to image-based shift-and-stack. These speedups enable the broad application of shift-and-stack to large-scale imaging surveys and searches for faint inner solar system objects. We provide a reference implementation via thefind-asteroidsPython package and this URL:https://github.com/stevenstetzler/find-asteroids. 
    more » « less
  4. Abstract We report the discovery of cometary activity in the form of a pronounced tail emanating from Near-Earth Object (523822) 2012 DG61, identified in UT 2024 April 18 Dark Energy Camera images by our AI assistant TailNet. TailNet is an AI designed to filter out images unlikely to show activity for volunteers of our NASA Partner “Active Asteroids” Citizen Science campaign, from which our AI is trained. Subsequently, our archival investigation revealed 2012 DG61 is recurrently active after we found it displaying a pronounced tail in a UT 2018 April 16 Steward Observatory Bart Bok 2.3 m telescope image and UT 2018 May 14 observations by G. Borisov with the 0.3 m telescope at MARGO Observatory. Our dynamical integrations reveal that 2012 DG61, an Apollo dynamical class member, is likely in 2:1 mean-motion resonance with Jupiter. We encourage additional observations to help characterize the activity morphology of this near-Earth comet. 
    more » « less
  5. Abstract We report the rotational lightcurves of 21 trans-Neptunian objects (TNOs) in Neptune’s 2:1 mean motion resonance obtained with the 6.5 m Magellan-Baade telescope and the 4.3 m Lowell Discovery Telescope. The main survey’s goal is to find objects displaying a large lightcurve amplitude that is indicative of contact binaries or highly elongated objects. In our sample, two 2:1 resonant TNOs showed a significant short-term lightcurve amplitude: 2002 VD 130 and (531074) 2012 DX 98 . The full lightcurve of 2012 DX 98 infers a periodicity of 20.80 ± 0.06 hr and amplitude of 0.56 ± 0.03 mag, whereas 2002 VD 130 rotates in 9.85 ± 0.07 hr with a 0.31 ± 0.04 mag lightcurve amplitude. Based on lightcurve morphology, we classify (531074) 2012 DX 98 as a likely contact binary but 2002 VD 130 as a likely single elongated object. Based on our sample and the lightcurves reported in the literature, we estimate the lower percentage of nearly equal-sized contact binaries at only 7%–14% in the 2:1 resonance, which is comparable to the low fraction reported for the dynamically cold classical TNOs. This low contact binary fraction in the 2:1 Neptune resonance is consistent with the lower estimate of the recent numerical modeling. We report the Sloan g ′, r ′, and i ′ surface colors of 2002 VD 130 , which is an ultra-red TNO whereas 2012 DX 98 is a very red object based on published surface colors. 
    more » « less
  6. Abstract We present the discovery of a short, diffuse tail on minor planet 2010 MK43(alternate designation 2010 RA78)—an object previously identified as an asteroid in a cometary orbit—by volunteers of our Citizen Science programActive Asteroids. Our follow-up investigation revealed eight Dark Energy Camera images showing 2010 MK43with a tail spanning UT 2024 February 12–UT 2024 February 18 when the object was outbound from perihelion. We now classify 2010 MK43as a Jupiter-family comet based on its Tisserand parameter with respect to JupiterTJ = 2.888, though our dynamical simulations reveal that, due to frequent close encounters with Jupiter, 2010 MK43was likely a quasi-Hilda within the last 10 kyr. 
    more » « less
  7. Abstract We report the discovery of cometary activity emanating from minor planet 2015 VP51outbound from its recent perihelion passage. The activity, in the form of a diffuse tail, was first identified by volunteers of our Citizen Science programActive Asteroids, a NASA Partner program hosted on theZooniverseplatform. This discovery was aided by the recently implementedTailNetartificial intelligence assistant which filters out images with a low likelihood of showing cometary activity. The tail is present in nine images of 2015 VP51from the Dark Energy Camera and OmegaCAM between UT 2015 August 2 and UT 2015 October 18. We classify 2015 VP51as a Jupiter-family comet based on its Tisserand parameter with respect to JupiterTJ = 2.931. 
    more » « less
  8. Abstract We report the discovery of cometary activity from minor planet 2011 UG104, which we classify as a Jupiter Family Comet (JFC). This discovery was aided by our Artificial Intelligence (AI) classification system:TailNet. JFC's, short-period comets with eccentric Jupiter-crossing orbits, originate from the Kuiper Belt and thus give us unique insight into the composition and distribution of volatiles in the outer solar system, past and present. Our AI assistantTailNetfirst classified 2011 UG104as active, which was affirmed by Citizen Scientists on our NASA Partner ProgramActive Asteroids. Through further archival image searches our science team found evidence of activity on 2011 UG104on three separate observations from 2021 February to 2021 April (81.°8 < f < 95.°0).  
    more » « less
  9. Abstract We have discovered two epochs of activity on quasi-Hilda 2009 DQ118. Small bodies that display comet-like activity, such as active asteroids and active quasi-Hildas, are important for understanding the distribution of water and other volatiles throughout the solar system. Through our NASA Partner Citizen Science project, Active Asteroids, volunteers classified archival images of 2009 DQ118as displaying comet-like activity. By performing an in-depth archival image search, we found over 20 images from UT 2016 March 8–9 with clear signs of a comet-like tail. We then carried out follow-up observations of 2009 DQ118using the 3.5 m Astrophysical Research Consortium Telescope at Apache Point Observatory, Sunspot, New Mexico, USA and the 6.5 m Magellan Baade Telescope at Las Campanas Observatory, Chile. These images revealed a second epoch of activity associated with the UT 2023 April 22 perihelion passage of 2009 DQ118. We performed photometric analysis of the tail and find that it had a similar apparent length and surface brightness during both epochs. We also explored the orbital history and future of 2009 DQ118through dynamical simulations. These simulations show that 2009 DQ118is currently a quasi-Hilda and that it frequently experiences close encounters with Jupiter. We find that 2009 DQ118is currently on the boundary between asteroidal and cometary orbits. Additionally, it has likely been a Jupiter family comet or Centaur for much of the past 10 kyr and will be in these same regions for the majority of the next 10 kyr. Since both detected epochs of activity occurred near perihelion, the observed activity is consistent with sublimation of volatile ices. 2009 DQ118is currently observable until ∼mid-October 2023. Further observations would help to characterize the observed activity. 
    more » « less