skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sheppard, Scott S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Abstract The trans-Neptunian object (58534) 1997 CQ29(a.k.a. Logos) is a resolved wide binary in the dynamically Cold Classical population. With Hubble Space Telescope resolved observations where the primary Logos is well separated from its secondary Zoe it can be established that Logos has a time-variable brightness. Logos’ brightness varied by several tenths of a magnitude over a short timescale of hours while the brightness variability of Zoe was on a longer timescale. New unresolved ground-based observations obtained with the Lowell Discovery Telescope and the Magellan-Baade telescope confirm at least one highly variable component in this system. With our ground-based observations and photometric constraints from space-based observations, we suggest that the primary Logos is likely a close/contact binary whose rotational period is 17.43 ± 0.06 hr for a lightcurve amplitude of 0.70 ± 0.07 mag, while Zoe is potentially a (very) slow rotator with an unknown shape. Using theCandelasoftware, we model the Logos-Zoe system and predict its upcoming mutual events season using rotational, physical, and mutual orbit parameters derived in this work or already published. Zoe’s shape and rotational period are still uncertain, so we consider various options to better understand Zoe. The upcoming mutual event season for Logos-Zoe starts in 2026 and will last for four years with up to two events per year. Observations of these mutual events will allow us to significantly improve the physical and rotational properties of both Logos and Zoe. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  3. Abstract The 5:3 and 7:4 mean motion resonances of Neptune are at 42.3 and 43.7 au, respectively, and overlap with objects in the classical trans-Neptunian belt (Kuiper Belt). We report the complete/partial lightcurves of 13 and 14 trans-Neptunian objects (TNOs) in the 5:3 and 7:4 resonances, respectively. We report a most likely contact binary in the 7:4 resonance, 2013 FR28, with a periodicity of 13.97 ± 0.04 hr and a lightcurve amplitude of 0.94 ± 0.02 mag. With a V-/U-shaped lightcurve, 2013 FR28has one of the largest well-sampled TNO amplitudes observed with ground-based observations, comparable to the well-determined contact binary 2001 QG298. 2013 FR28has a mass ratioq∼ 1 with a densityρ∼ 1 g cm−3. We find several objects with large amplitudes and classify 2004 SC60, 2006 CJ69, and 2013 BN82as likely contact binaries and 2001 QF331, 2003 YW179, and 2015 FP345as likely elongated objects. We observe the 17:9 resonant or classical object 2003 SP317that we classify as a likely contact binary. A lower estimate of 10%–50% and 20%–55% for the fraction of (nearly) equal-sized contact binaries is calculated in the 5:3 and 7:4 resonances, respectively. Surface colors of 2004 SC60, 2013 BN82, 2014 OL394, and 2015 FP345have been obtained. Including these colors with ones from the literature reveals that elongated objects and contact binaries share the same ultrared surface color, except Manwë–Thorondor and 2004 SC60. Not only are the colors of the 7:4 and 5:3 TNOs similar to the cold classicals, but we demonstrate that the rotational properties of the 5:3 and 7:4 resonants are similar to those of the cold classicals, inferring a clear link between these subpopulations. 
    more » « less
  4. Abstract We report the discovery of cometary activity in the form of a pronounced tail emanating from Near-Earth Object (523822) 2012 DG61, identified in UT 2024 April 18 Dark Energy Camera images by our AI assistant TailNet. TailNet is an AI designed to filter out images unlikely to show activity for volunteers of our NASA Partner “Active Asteroids” Citizen Science campaign, from which our AI is trained. Subsequently, our archival investigation revealed 2012 DG61 is recurrently active after we found it displaying a pronounced tail in a UT 2018 April 16 Steward Observatory Bart Bok 2.3 m telescope image and UT 2018 May 14 observations by G. Borisov with the 0.3 m telescope at MARGO Observatory. Our dynamical integrations reveal that 2012 DG61, an Apollo dynamical class member, is likely in 2:1 mean-motion resonance with Jupiter. We encourage additional observations to help characterize the activity morphology of this near-Earth comet. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026
  5. Abstract We report the discovery of cometary activity from minor planet 2011 UG104, which we classify as a Jupiter Family Comet (JFC). This discovery was aided by our Artificial Intelligence (AI) classification system:TailNet. JFC's, short-period comets with eccentric Jupiter-crossing orbits, originate from the Kuiper Belt and thus give us unique insight into the composition and distribution of volatiles in the outer solar system, past and present. Our AI assistantTailNetfirst classified 2011 UG104as active, which was affirmed by Citizen Scientists on our NASA Partner ProgramActive Asteroids. Through further archival image searches our science team found evidence of activity on 2011 UG104on three separate observations from 2021 February to 2021 April (81.°8 < f < 95.°0).  
    more » « less
  6. Abstract We report the rotational lightcurves of 21 trans-Neptunian objects (TNOs) in Neptune’s 2:1 mean motion resonance obtained with the 6.5 m Magellan-Baade telescope and the 4.3 m Lowell Discovery Telescope. The main survey’s goal is to find objects displaying a large lightcurve amplitude that is indicative of contact binaries or highly elongated objects. In our sample, two 2:1 resonant TNOs showed a significant short-term lightcurve amplitude: 2002 VD130and (531074) 2012 DX98. The full lightcurve of 2012 DX98infers a periodicity of 20.80 ± 0.06 hr and amplitude of 0.56 ± 0.03 mag, whereas 2002 VD130rotates in 9.85 ± 0.07 hr with a 0.31 ± 0.04 mag lightcurve amplitude. Based on lightcurve morphology, we classify (531074) 2012 DX98as a likely contact binary but 2002 VD130as a likely single elongated object. Based on our sample and the lightcurves reported in the literature, we estimate the lower percentage of nearly equal-sized contact binaries at only 7%–14% in the 2:1 resonance, which is comparable to the low fraction reported for the dynamically cold classical TNOs. This low contact binary fraction in the 2:1 Neptune resonance is consistent with the lower estimate of the recent numerical modeling. We report the Sloang′,r′, andi′ surface colors of 2002 VD130, which is an ultra-red TNO whereas 2012 DX98is a very red object based on published surface colors. 
    more » « less
  7. Abstract We report the discovery of an active asteroid, 2016 UU121, for the first time via artificial intelligence-enhanced classification, informed by our NASA Partner programActive Asteroids, a Citizen Science project hosted on theZooniverseplatform. The early version of our deep neural network,TailNet, identified potential activity associated with 2016 UU121in 40 Dark Energy Camera (DECam) images from UT 2021 September 10 to 11. The discovery was vetted and confirmed by ourActive Asteroidscore science team. In total, 66 DECam images of this object showed clear activity in the form of a tail. 2016 UU121has a Tisserand parameter with respect to Jupiter of 3.161, thus we classify the object as an active asteroid. Moreover, the activity occurred near perihelion, so 2016 UU121is also a candidate Main-belt comet. 
    more » « less
  8. Abstract We report the discovery of cometary activity emanating from Main-belt asteroid 410590 (2008 GB140), a finding facilitated, for the first time, by an artificial intelligence (AI) assistant. The assistant,TailNet, is a prototype we designed to enhance volunteer efforts of our Citizen Science projectActive Asteroids, a NASA Partner program hosted on theZooniverseplatform. Our follow-up investigation revealed eight Dark Energy Camera images showing 2008 GB140with a tail spanning UT 2023 April 23–UT 2023 July 3, when the object was inbound to perihelion. We classify 2008 GB140as an active asteroid and a candidate Main-belt comet (MBC)—a main-belt asteroid that undergoes volatile sublimation-driven activity. Notably, 2008 GB140is presently near perihelion, thus the object is a prime target for follow-up observations to further characterize its activity. 
    more » « less
  9. Abstract We present the Citizen Science program Active Asteroids and describe discoveries stemming from our ongoing project. Our NASA Partner program is hosted on the Zooniverse online platform and launched on 2021 August 31, with the goal of engaging the community in the search for active asteroids—asteroids with comet-like tails or comae. We also set out to identify other unusual active solar system objects, such as active Centaurs, active quasi-Hilda asteroids (QHAs), and Jupiter-family comets (JFCs). Active objects are rare in large part because they are difficult to identify, so we ask volunteers to assist us in searching for active bodies in our collection of millions of images of known minor planets. We produced these cutout images with our project pipeline that makes use of publicly available Dark Energy Camera data. Since the project launch, roughly 8300 volunteers have scrutinized some 430,000 images to great effect, which we describe in this work. In total, we have identified previously unknown activity on 15 asteroids, plus one Centaur, that were thought to be asteroidal (i.e., inactive). Of the asteroids, we classify four as active QHAs, seven as JFCs, and four as active asteroids, consisting of one main-belt comet (MBC) and three MBC candidates. We also include our findings concerning known active objects that our program facilitated, an unanticipated avenue of scientific discovery. These include discovering activity occurring during an orbital epoch for which objects were not known to be active, and the reclassification of objects based on our dynamical analyses. 
    more » « less
  10. Abstract We announce the discovery of cometary activity emitting from minor planet 2018 VL10in Dark Energy Camera images spanning from UT 2018 December 31 to UT 2019 March 3. The activity was identified by volunteers of our NASA Partner programActive Asteroids, aZooniverse-hosted Citizen Science project designed to find previously unknown activity in known minor planets. Notably, 2018 VL10crosses the orbits of Mars and Jupiter, and experiences close approaches of less than 0.5 au with both Earth and Jupiter. We classify 2018 VL10as a member of the Jupiter-family comets, a group of objects especially important to understand because they hold important clues about the solar system volatile distribution, past and present. 
    more » « less